Производственная функция фирмы сущность, виды применения — реферат

Рисунок 2 Изокванты, соответствующие различному объему производства

На рис. 1 представлено три изокванты, соответствующие объему производства в 200, 300 и 400 единиц продукции. Можно сказать, что для выпуска 300 единиц продукции необходимо K 1 единиц капитала и L 1 единиц труда или K 2 единиц капитала и L 2 единиц труда, или любая другая их комбинация из того множества, которое представлено изоквантой Y 2 = 300.
В общем случае в множестве X допустимых наборов производственных факторов выделяется подмножество X c , называемое изоквантой производственной функции, которое характеризуется тем, что для всякого вектора справедливо равенство

Таким образом, для всех наборов ресурсов, соответствующих изокванте, оказываются равными объемы выпускаемой продукции. По существу изокванта представляет собой описание возможности взаимной замены факторов в процессе производства продукции, обеспечивающей неизменный объем производства. В связи с этим оказывается возможным определить коэффициент взаимной замены ресурсов, используя дифференциальное соотношение вдоль любой изокванты

Отсюда коэффициент эквивалентной замены пары факторов j и k равен:


Полученное соотношение показывает, что если производственные ресурсы замещаются в отношении, равном отношению приростных продуктивностей, то количество производимой продукции остается неизменным. Нужно сказать, что знание производственной функции позволяет охарактеризовать масштабы возможности осуществить взаимную замену ресурсов в эффективных технологических способах. Для достижения этой цели служит коэффициент эластичности замены ресурсов по продукции

который вычисляется вдоль изокванты при неизменном уровне затрат прочих производственных факторов. Величина sjk представляет собой характеристику относительного изменения коэффициента взаимной замены ресурсов при изменении соотношения между ними. Если отношение взаимозаменяемых ресурсов изменится на sjk процентов, то коэффициент взаимной замены sjk изменится на один процент. В случае линейной производственной функции коэффициент взаимной замены остается неизменным при любом соотношении используемых ресурсов и поэтому можно считать, что эластичность s jk = 1. Соответственно большие значения sjk свидетельствуют о том, что возможна большая свобода в замене производственных факторов вдоль изокванты и при этом основные характеристики производственной функции (продуктивности, коэффициент взаимозамены) будут меняться очень слабо [9, 234с.].
Для степенных производственных функций для любой пары взаимозаменяемых ресурсов справедливо равенство s jk = 1.
Представление эффективного технологического множества с помощью скалярной производственной функции оказывается недостаточным в тех случаях, когда нельзя обойтись единственным показателем, описывающим результаты деятельности производственного объекта, но необходимо использовать несколько ( М ) выходных показателей (рисунок 3).


Рисунок 3 Различные случаи поведения изоквант

В этих условиях можно использовать векторную производственную функцию

Важное понятие предельной (дифференциальной) продуктивности вводится соотношением

Аналогичное обобщение допускают все остальные главные характеристики скалярных ПФ.
Подобно кривым безразличия изокванты также подразделяются на различные типы.
Для линейной производственной функции вида

где Y объем производства; A , b 1 , b 2 параметры; K , L затраты капитала и труда, и полном замещении одного ресурса другим изокванта будет иметь линейную форму (рисунок 4, а).
Для степенной производственной функции

Тогда изокванты будут иметь вид кривых (рисунок 4,б).
Если изокванта отражает лишьодин технологический способ производства данного продукта, то труд и капитал комбинируются в единственно возможном сочетании (рисунок 4,в).


а). Изокванты линейного типа
б). Изокванты степенной производственной функции
в). Изокванты при жесткой дополняемости ресурсов
г) Ломаные изокванты
Рисунок 4 – Разные варианты изоквант

Комментарии: