Производственная функция фирмы сущность, виды применения — реферат

Такие изокванты иногда называют изоквантами леонтьевского типа по имени американского экономиста В.В. Леонтьева, который положил такой тип изокванты в основу разработанного им метода inputoutput (затратывыпуск).
Ломаная изокванта предполагает наличие ограниченного количества технологий F (рисунок 4,г).
Изокванты подобной конфигурации используются в линейном программировании для обоснования теории оптимального распределения ресурсов. Ломаные изокванты наиболее реалистично представляют технологические возможности многих производственных объектов. Однако в экономической теории традиционно используют главным образом кривые изокванты, которые получаются из ломаных при увеличении числа технологий и увеличении соответственно точек излома [11, 304c.].
Наиболее широко распространены мультипликативно-степенные формы представления производственных функций. Их особенность состоит в следующем: если один из сомножителей равен нулю, то результат обращается в нуль. Легко заметить, что это реалистично отражает тот факт, что в большинстве случаев в производстве участвуют все анализируемые первичные ресурсы и без любого из них выпуск продукции оказывается невозможным. В самой общей форме (она называется канонической) эта функция записывается так:

или

Здесь коэффициент А, стоящий перед знаком умножения, учитывает размерность, он зависит от избранной единицы измерений затрат и выпуска. Сомножители от первого до n-го могут иметь различное содержание в зависимости от того, какие факторы оказывают влияние на общий результат (выпуск). Напр., в ПФ, которая применяется для изучения экономики в целом, можно в качестве результативного показателя принять объем конечного продукта, а сомножителей – численность занятого населения x1, сумму основных и оборотных фондов x2, площадь используемой земли x3. Только два сомножителя у функции Кобба–Дугласа, с помощью которой была сделана попытка оценить связь таких факторов, как труд и капитал, с ростом национального дохода США в 20–30-е гг. ХХ в.:
N = A • Lα • Kβ,
где N – национальный доход; L и K – соответственно объемы приложенного труда и капитала (подробнее см.;Кобба–Дугласа функция).
Степенные коэффициенты (параметры) мультипликативно-степенной производственной функции показывают ту долю в процентном приросте конечного продукта, которую вносит каждый из сомножителей (или на сколько процентов возрастет продукт, если затраты соответствующего ресурса увеличить на один процент); они являются коэффициентами эластичности производства относительно затрат соответствующего ресурса. Если сумма коэффициентов составляет 1, это означает однородность функции: она возрастает пропорционально росту количества ресурсов. Но возможны и такие случаи, когда сумма параметров больше или меньше единицы; это показывает, что увеличение затрат приводит к непропорционально большему или непропорционально меньшему росту выпуска - эффект масштаба [6, с.212].
В динамическом варианте применяются разные формы производственной функции. Например в 2-факторном случае: Y(t) = A(t) Lα(t) Kβ(t), где множитель A(t) обычно возрастает во времени, отражая общий рост эффективности производственных факторов в динамике.
Логарифмируя, а затем дифференцируя по t указанную функцию, можно получить соотношения между темпами прироста конечного продукта (национального дохода) и прироста производственных факторов (темпы прироста переменных принято здесь описывать в процентах).
Дальнейшая “динамизация” ПФ может заключаться в использовании переменных коэффициентов эластичности.
Описываемые ПФ соотношения носят статистический характер, т. е. проявляются только в среднем, в большой массе наблюдений, поскольку реально на результат производства воздействуют не только анализируемые факторы, но и множество неучитываемых. Кроме того, применяемые показатели как затрат, так и результатов неизбежно являются продуктами сложного агрегирования (напр., обобщенный показатель трудовых затрат вмакроэкономической функции вбирает в себя затраты труда разной производительности, интенсивности, квалификации и т. д.).
Особая проблема – учет в макроэкономических ПФ фактора технического прогресса (подробнее см. в ст. “Научно-технический прогресс”). С помощью ПФ изучается также эквивалентная взаимозаменяемость факторов производства (см. Эластичность замещения ресурсов), которая может быть либо неизменной, либо переменной (т. е. зависимой от объемов ресурсов). Соответственно функции делят на два вида: с постоянной эластичностью замены (CES – Constant Elasticity of Substitution) и с переменной (VES – Variable Elasticity of Substitution) (см. ниже).
На практике применяются три основных метода определения параметров макроэкономических ПФ: на основе обработки временных рядов, на основе данных о структурных элементах агрегатов и о распределениинационального дохода. Последний метод называется распределительным.
• При построении производственной функции необходимо избавляться от явлений мультиколлинеарности параметров иавтокорреляции – в противном случае неизбежны грубые ошибки.
Приведем некоторые важные производственные функции.
Линейная производственная функция:
P = a1x1 + ... + anxn,
где a1, ..., an – оцениваемые параметры модели: здесь факторы производства замещаемы в любых пропорциях.
Функция CES:
P = A [(1 – α) K-b + αL-b]-c/b,
в этом случае эластичность замещения ресурсов не зависит ни от K, ни от L и, следовательно, постоянна:

Отсюда и происходит название функции.
Функция CES, как и функция Кобба– Дугласа, исходит из допущения о постоянном убывании предельной нормы замещения используемых ресурсов. Между тем эластичность замещения капитала трудом и, наоборот, труда капиталом в функции Кобба–Дугласа, равная единице, здесь может принимать различные значения, не равные единице, хотя и является постоянной. Наконец, в отличие от функции Кобба–Дугласа логарифмирование функции CES не приводит ее к линейному виду, что вынуждает использовать для оценки параметров более сложные методы нелинейного регрессионного анализа [10, с.278].
Производственная функция всегда конкретна, т.е. предназначается для данной технологии. Новая технология – новая производительная функция. С помощью производственной функции определяется минимальное количество затрат, необходимых для производства данного объема продукта.
Производственные функции, независимо от того, какой вид производства ими выражается, обладают следующими общими свойствами:
1) Увеличение объема производства за счет роста затрат только по одному ресурсу имеет предел (нельзя нанимать много рабочих в одно помещение – не у всех будут места).
2) Факторы производства могут быть взаимодополняемы (рабочие и инструменты) и взаимозаменяемы (автоматизация производства).
В наиболее общем виде производственная функция выглядит следующим образом:
,
где - объем выпуска;
K- капитал (оборудование);
М- сырье, материалы;
Т – технология;
N – предпринимательские способности.
Наиболее простой является двухфакторная модель производственной функции Кобба – Дугласа, с помощью которой раскрывается взаимосвязь труда (L) и капитала (К).

Эти факторы взаимозаменяемы и взаимодополняемы. Еще в 1928 году американские ученые – экономист П. Дуглас и математик Ч. Кобб – создали макроэкономическую модель, позволяющую оценить вклад различных факторов производства в увеличении объема производства или национального дохода. Эта функция имеет следующий вид:
Q=AK α*L β ,
где А – производственный коэффициент, показывающий пропорциональность всех функций и изменяется при изменении базовой технологии (через 30-40 лет);
K, L- капитал и труд;
α,β -коэффициенты эластичности объема производства по затратам капитала и труда.
Если α = 0,25, то рост затрат капитала на 1% увеличивает объем производства на 0,25%.
На основе анализа коэффициентов эластичности в производственной функции Кобба - Дугласа можно выделить:
1) пропорционально возрастающую производственную функцию, когда
α+ β=1 ( ).
2) непропорционально – возрастающую
);
3) убывающую
.

Комментарии: